The Safety of Radioiodine Therapy for Women of Reproductive Age

Aisyah Elliyanti

Department of Medical Physics and Radiology, Faculty of Medicine Universitas Andalas

ABSTRACT

Radioiodine (131I) is an essential adjuvant treatment after thyroidectomy in patients with differentiated thyroid carcinoma as well as Graves' disease (hyperthyroidism). Generally, 131I is safe, it has some side effects. Infertility is one an important issue for patients who will consider receiving the therapy, especially for a woman in reproductive age. This is reviewed in this paper. Studies reported, in hyperthyroidism and thyroid cancer patients who received 131I therapy, demonstrated no significant radiation effect, some of the patients may have experienced short-term reproductive organs dysfunction and changes generally resolve. There is no effect of 131I on subsequent pregnancy documented.

KEYWORDS

Hyperthyroidism, thyroid cancer, infertility

CORRESPONDENCE

Aisyah Elliyanti
E-mail: aelliyanti@med.unand.ac.id

I. INTRODUCTION

Radioiodine (131I) is a radionuclide emits β and γ particles. β particle is used for therapy purpose and γ particle for diagnostics. It has a physical half-life of 8.1 days with β-particle energy 0.61 MeV and γ-particle energy 364 keV. Radioiodine therapy is administrated by oral to treat papillary and follicular thyroid cancer, hyperthyroidism, or nontoxic nodular goiter [Silberstein, 2012].

131I is captured and accumulated in thyroid cells to damage the cell. 131I therapy was introduced around 70 years ago for the treatment of benign thyroid diseases. 131I has been used as second-line therapy 20 years ago for Graves’ disease in case of recurrence after antithyroid drugs (ATD) therapy [Wartofsky, 1991; Vaidya, 2008; Bonnema, 2012]. Recent data in the United States reported, ATD seems to replace by 131I as a first-line choice and cure rate of patients who received 131I within one year was 50%-90% [Emiliano, 2008; Bonnema, 2012]. However, hypothyroidism condition is an inevitable side effect and some related with to the radiation dose and predisposed individuals. So, longer follow-ups are needed after receiving 131I therapy.

In the management of differentiated thyroid cancer (DTC), 131I has been used for adjuvant therapy after near-total thyroidectomy for ablation microscopic residual tissue, distance metastases, persistence and recurrence tumor, and nonresectable tumor. Ten years of survival
for patients who received 131I therapy is estimated 85% [Sioka 2011]. The US Air Force Registry and the Ohio State University Registry reported, that postoperative radioiodine (RAI) therapy reduced compare surveillance in 15-year recurrence (16% vs 38%), and mortality (3% vs 8%). [Mazzaferri, 1997. Anderson 2017].

Radiation phobia causes fear for patients when deciding to get radioiodine therapy for the treatment of thyroid diseases. Is radioiodine therapy-induced infertility? The statement often arises when patients are offered radioiodine for thyroid cancer as well as hyperthyroid disease. Infertility and sex disfunction are important issues related to radioiodine. In the present review paper, we discuss publish reports of the radioiodine therapy effects focus on fertility for subsequent pregnancy planning.

II. METHODS

Studies of radioiodine effects were identified using Pubmed. The searching database was using keyword radioiodine effect, 131I, pregnancy, infertility. The related papers and abstracts were download and reviewed.

III. RESULT

131I therapy on ovarium function

Infertility effect of 131I treatment is an important consideration for most of the patients in reproductive age. The treatment may be affected by reproductive organs from blood circulation that contain 131I. A systemic review study reported that 8 to 27% of 3,023 patients who received radioiodine for thyroid cancer had a transient of menstrual period absence within the first year after the therapy [Sioka, 2011]. A study reported 20% of patients who received 4.24 MBq of 131I experienced amenorrhea and increasing of FSH level for one year [Sioka, 2011].

From four hundred-nine subject of DTC subjects, thirty-four (38%) of them who received 131I experienced amenorrhea for four to ten months after the treatment and, four of them reported subsequently to pregnant 16-30 months after the treatment. Forty-nine (12%) of the subjects experienced a menstrual cycle irregularity, and 19 of them subsequently to be pregnant and one suffered from abortion [Vini, 2002].

Another study reported that menstrual cycle irregularities increased significantly after received 131I therapy, 83 (17%) of 322 patients received 3 GBq single ablation dose of 131I reported experienced amenorrhea and transient menstrual cycle irregularities for 10 months after therapy, but no reports for ovarian failure permanently [Sioka, 2011].

A review of 159 female DTC patients who received 131I therapy reported no signs of changing of luteinizing hormone (LH), Follicle-stimulating hormone (FSH), estrogen and progesterone levels, and no sexual dysfunction, abortion, infertility during one year of follow-up [Sioka, 2011].

Another study, also reported earlier menopause to compare to control [Raymond, 1989]. However, another study reported, there was no association between 131I and early menopause [Sioka, 2011].

Pregnancy after 131I therapy

A study review 66 pregnancy women after received 131I therapy (14 women within one-year therapy and 51 women after one year) from 2000 to 2005. Variation doses of 131I from 1.11 GBq to 20.35 GBq and range of conception with last administrations of 131I were 1 month to 10 years. The result of the study showed no evidence of genetic damage and no congenital anomaly reported in 14 pregnancies which occurred within one year after received 131I.
Furthermore, there was no significant association between miscarriage, preterm birth in patients who received 131I therapy from the general population [Brandão, 2007. Dottorini, 1995]. Another study reported that miscarriage incidence is higher within one year of the last 131I therapy [Schlumberger M 1996].

A retrospective study in 257 Graves’ disease patients reported that, no significant differences between patients who received 131I therapy and anti-thyroid drug (ATD) or 166 the healthy women in intrauterine growth restriction, neonatal gender, premature birth. However, the higher abortion rate was found in Graves' disease patients who received both 131I and ATD [Zhang 2016].

A cohort study indicated that 131I treatment is associated with decreased pregnancy and successful delivery rates [Ko 2016]. The underlying mechanism seems beside the impact of the therapy, likely involves by a physician recommendation, patient’s psychological issue, the stage of disease especially, and un control of thyroid hormone level.

131I therapy on testicular function

131I therapy may be associated with a reduction in sperm counts, it also elevated the level of FSH transiently. Therapeutic doses up to 1.85GBq (50mCi) may be elevated FSH levels and follow with testicular damage [Fard-Esfahani, 2014]. Higher cumulative therapy doses of 18.5–29.6 GBq (500–800 mCi) in a male are associated with increased risk of elevation of FSH levels. However, fertility and risk of miscarriage or congenital abnormalities in subsequent pregnancies are almost the same with moderate 131I doses (7.4GBq /200mCi) [Fard-Esfahani,2014]. There are no reports of permanent infertility in male with a single ablative dose. Clinically, oligospermia occurs when male gonadal receiving doses excess of 50–100 rad. Spermatogenesis might be recovered within 20–48 months, but it is not always reversible [Fard-Esfahani,2014]. Gonadal complications can reduce with the lowest dose as possible, well hydration, frequent urinate, and avoid constipation. Sperm banking also can be offered to a male patient if he was planning to have a baby very soon or will receive a multiple of 131I doses [Fard-Esfahani,2014]. Another study reported that the probability of infertility or birth defects offspring of a male patient who received 131I up to 9.25 GBq (250 mCi) was the same from the general population [Fard-Esfahani 2014].

IV. DISCUSSION

Over five decades, 131I therapy has been accepted and proven to be effective for thyroid diseases. Graves’ disease mostly identified in women in reproductive age. Therefore, the effects and safety of 131I are important issues. Adverse effects of 131I therapy were correlated to the cumulative dose [Clement,2015].

Ovary radiation source of 131I exposure are the blood, bladder, bowel, and possibly functioning metastases foci which close to the ovaries. It is recommended to have a lot of drink, urinate frequently and avoid constipation when received 131I exposure. Each ovary receives 0.14 cGy/37 MBq administered a dose of internal radiation dose [Vini,2002]. The caution should be taken in patients with hypothyroid and decreased renal function during 131I administration because it will cause prolonged gonadal exposure. Furthermore, the ovaries received about threefold higher dose in a hypothyroid patient. [Vini,2002]. Thyroid cancer patients who received 10–11 GBq of 131I may be experienced amenorrhea, and radiation absorbed dose had no significant difference with patients without menstruation cycle disturbance [Vini,2002]. A cohort study of Taiwanese National Health Insurance (NHI) program database during 1998-2010, reported amenorrhea occurred in 8% to 27% of women within the first year after radioactive therapy [Ko 2016].

Older patients were likely to have more experiences in amenorrhoea. This is indicating that ovarian sensitivity to radiation increases with increasing age. Young women who received 4Gy
external beam radiotherapy had amenorrhea experiences around 30% compare with women above 40 (100%) [Vini 2002]. However, ovaries of young women who have been receiving a high dose of internal radiation more tolerate up to 20 Gy. Experiences of resumption of menstruation cycle have been reported [Vini,2002].

Amenorrhea with a transient increase of gonadotrophins level (FSH and LH) occurred one to three months after radioiodine The absence of menstrual cycle for few months after radioiodine exposure might indicate the effect on the developing oocytes in future cycles. A study reported, in women under 40 years no evidence of decreased fertility after received 131I treatment and no adverse outcome on subsequent pregnancies [Vini, 2002].

V. CONCLUSION

Studies of 131I therapy in hyperthyroidism and thyroid cancer patients demonstrated no significant radiation effect. Around 30% of patients may have experienced short-term reproductive organs disfunction and the changes generally resolve. There is no effect of 131I on subsequent pregnancy documented. Overall, 131I therapy is safe, however, is recommended holding pregnancy until one year after received 131I therapy to allow irradiated spermatozoa and ovarian complete recovery for patients without undergone gonadal function and thyroid hormone under control.
REFERENCES

BIOGRAPHY
Author: Dr. Aisyah Elliyanti MD. 1996; MD graduated from Faculty of Medicine Universitas Andalas, 2001-2014 Nuclear Medicine Program at Faculty of Medicine Universitas Padjadjaran, 2014-2015 Master degree at Faculty of Medicine Universitas Padjadjaran, 2010-2015 Doctoral program at Faculty of Medicine Universitas Padjadjaran,